Sabancı .	Course	ENS 521- Hydrogen Energy System	
	Instructor	Begüm Yarar Kaplan	
Universitesi	Term	2021-2022 Fall	
	Hours of classroom	Monday 12.40-14.30 (FASS G025)	
		<i>Tuesday</i> 08.40-09.30 (FENS G035)	
	Zoom link	https://sabanciuniv.zoom.us/j/5271871124	

Instructor's Contact Information

Office Phone	0216 483 90 00 - 2411 - 2412
Office Location	SUNUM 1105
E-mail address	begum.yarar@sabanciuniv.edu
Office hours	Wednesday 15.40-16.30 (but please email me)

General Course Information

Course Description	This course is designed to be an extensive introduction to principles of hydrogen technology, hydrogen production methods, electrolyzers, electrochemistry of energy conversion systems, and fuel cells as the main focus of applications of hydrogen energy.
Objectives	 To provide a theoretical background which is necessary for the understanding of hydrogen technology and its applications Identify electrochemical reactions, components of different type of electrolyzers and fuel cells Understand the working principles, advantages, and challenges of fuel cells To familiarize the students with application areas of hydrogen technology
Reference Books	 There will be no textbook for this course. You can study from lecture notes and reference books on <i>Hydrogen and Fuel Cell Technology</i>. Several examples are given below: Zhang, Jiujun, ed. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer Science & Business Media, 2008. Barbir, Frano. PEM fuel cells: theory and practice. Academic press, 2012. Lipman, Timothy E., and Adam Z. Weber, eds. Fuel cells and hydrogen production: A volume in the Encyclopedia of sustainability science and technology. Springer, 2019. Scott, Keith, ed. Electrochemical Methods for Hydrogen Production. Royal Society of Chemistry, 2019.

Grading	Attendance – 5 %
	Midterm – 20 %
	Project – 40 %
	Final exam – 35 %

Tentative Course Schedule

Date	Topic
September 27 & 28	Introduction to hydrogen technology
	-Fundamentals, terminology, history of hydrogen technology
	-General overview: Advantages, current situation of technology and challenges
October 4 & 5	Hydrogen production methods
	-Clean hydrogen production methods, Electrolyzers
	-General overview: type of electrolyzers, current status, advantages and challenges
October 11 & 12	Electrolyzers
	Working principles of different type of electrolyzers, materials for membrane-electrode-
	assembly of electrolyzers, performance evaluation, electrochemical characterization of
	PEM and AEM type electrolyzers
October 18 & 19	General principles of electrochemical energy conversion systems
	-Description of electrochemical cells used for energy conversion
	-General overview: fuel cells, type of fuel cells, working conditions of different types of
	fuel cells
October 25 & 26	Polymer electrolyte membrane (PEM) fuel cells
	-Detailed description of materials used for membrane-electrode-assembly of PEM fuel
	cells: membranes, catalysts, and electrodes
	-Current technology, advantages, and drawbacks
November 1	Midterm
November 2	Polymer electrolyte membrane (PEM) fuel cells
	-Detailed description of materials used for membrane-electrode-assembly of PEM fuel
	cells: membranes, catalysts, and electrodes
	-Current technology, advantages, and drawbacks
November 8	Electrochemical characterizations and performance evaluation of PEM fuel cell
	components
	-Detailed description of ex-situ and in-situ electrochemical characterizations with
	examples
November 9	Anion exchange (AEM) fuel cells

	-Detailed description of materials used for membrane-electrode-assembly of AEM fuel	
	cells: membranes, catalysts, and electrodes	
	-Current technology, advantages, and drawbacks	
November 15 & 16	Electrochemical characterizations and performance evaluation of AEM fuel cell	
	components	
	-Detailed description of ex-situ and in-situ electrochemical characterizations with	
	examples	
November 22 & 23	Hydrogen storage methods	
	-Materials for hydrogen storage	
	-Hydrogen storage methods for fuel cell applications	
November 29 & 30	Applications of fuel cells, current market, and future targets	
December 6 & 7	Project Presentations	
December 13 & 14	Project Presentations	
December 20 & 21	Project Presentations	
December 27 & 28	Project Presentations	